Chapter 1 Introduction and Overview of Engines

1.1 Engine Fundamentals
 1.1.1 Definition of an Engine
 1.1.2 Types of Internal Combustion Engines
 1.1.3 Typical Internal Combustion Engine Structure

1.2 Principles of the Four-Stroke Combustion Cycle
 1.2.1 Spark Ignition Engines
 1.2.2 Compression Ignition Engines

1.3 Two-Stroke Engines

1.4 Engine Displacement and Compression Ratio

1.5 Engine Performance
 1.5.1 Torque
 1.5.2 Horsepower

1.6 Internal Combustion Engine Efficiency
 1.6.1 Mechanical Efficiency
 1.6.2 Thermal Efficiency
 1.6.3 Engine Volumetric Efficiency

1.7 References

Chapter 2 Valvetrain Systems

2.1 Overview of Valvetrain Systems
2.2 Valve Actuation
 2.2.1 Valve Lift and Duration
 2.2.2 Valve Timing and Overlap
 2.2.3 Effect of Valve Timing on Performance and Emissions

2.2.4 Valvetrain System Timing

2.3 Variable Valve Actuation—Cam Driven
 2.3.1 Overview of Variable Valve Timing
 2.3.2 Variable Valve Timing by Camshaft Phasing
 2.3.3 Variable Valve Lift by Cam Profile Switching
 2.3.4 Variable Valve Lift by Lost Motion

2.3.5 Variable Valve Actuation by Cam Phasing and Variable Lift
2.3.6 Variable Valve Actuation by Varying the Rocker Ratio

2.4 Variable Valve Actuation—Camless System
 2.4.1 Electromagnetic Valve Actuation
 2.4.2 Electrohydraulic Valve Actuation
 2.4.3 Comparison of Various Variable Valve Actuation Systems

2.5 Engine Brake and Valvetrains

2.6 Types of Valvetrain
 2.6.1 Type I Valvetrain—Direct Acting, Overhead Cam
 2.6.2 Type II Valvetrain—End-Pivot Rocker Arm, Overhead Cam
 2.6.3 Type III Valvetrain—Center-Pivot Rocker Arm, Overhead Cam
 2.6.4 Type IV Valvetrain—Center-Pivot Rocker Arm, Overhead Valve
 2.6.5 Type V Valvetrain—Center-Pivot Rocker Arm, Overhead Valve
 2.6.6 Ranking of Various Valvetrains

2.7 Valvetrain System Design
 2.7.1 Valvetrain Selection
 2.7.2 Valvetrain System Mechanics—Kinematics Analysis
 2.7.3 Valvetrain System Dynamics Analysis

2.8 References

Chapter 3 Valvetrain Components

3.1 Overview

3.2 Valves
 3.2.1 Valve Nomenclature and Construction
 3.2.2 Valve Operating Characteristics
 3.2.3 Valve Design
 3.2.4 Valve Materials

3.3 Cams
 3.3.1 Cam Nomenclature and Design Considerations
 3.3.2 Cam Profile Characteristics
 3.3.3 Cam Profile Design
 3.3.4 Considerations in Cam Profile Determination
 3.3.5 Lightweight Cam Design
 3.3.6 Cam Lobe Surface Finishes and Tolerances
 3.3.7 Cam Materials

3.4 Valvetrain Lash Compensators
 3.4.1 Lash and Mechanical Lash Adjusters
 3.4.2 Hydraulic Lash Compensators
 3.4.3 Hydraulic Lash Compensation Mechanism
 3.4.4 Hydraulic Lifter Design Considerations
 3.4.5 Dimensions, Tolerances, and Surface Finishes
 3.4.6 Materials and Stresses

3.5 Seat Inserts
 3.5.1 Nomenclature
 3.5.2 Insert Design Considerations
 3.5.3 Insert Materials
 3.5.4 Insert Material Properties
 3.5.5 Wear Resistance
 3.5.6 Machinability
 3.5.7 Corrosion Resistance

3.6 Valve Guides
 3.6.1 Valve Guide Types and Nomenclature
 3.6.2 Valve Guide Design
 3.6.3 Guide Materials
 3.6.4 Guide Material Properties
3.7 Rocker Arms
 3.7.1 Rocker Arm Configurations
 3.7.2 Design Guidelines
 3.7.3 Rocker Arm Materials
 3.7.4 Variable Actuation Rocker Arms
3.8 Valve Springs
 3.8.1 Introduction
 3.8.2 Design Considerations
 3.8.3 Spring Performance
 3.8.4 Valve Spring Materials
3.9 Valve Stem Seals
 3.9.1 Introduction
 3.9.2 Design Considerations
 3.9.3 Seal Materials
3.10 Keys
 3.10.1 Single-Bead Keys
 3.10.2 Multiple-Bead Keys
 3.10.3 Dimensions and Tolerances
 3.10.4 Key Materials
3.11 Retainers
 3.11.1 One-Piece Retainers
 3.11.2 Two-Piece Retainers
 3.11.3 Dimensions and Tolerances
 3.11.4 Retainer Materials
3.12 Other Components
 3.12.1 Valve Rotators
 3.12.2 Pushrods
 3.12.3 Valve Bridges
 3.12.4 Crosshead Rocker Arms
3.13 References

Chapter 4 Valvetrain Testing

4.1 Introduction
4.2 Materials and Testing
 4.2.1 Material Behavior
 4.2.2 Mechanical Tensile Testing
 4.2.3 Hardness Testing
 4.2.4 Fracture Toughness Testing
 4.2.5 Fatigue Testing
 4.2.6 Friction Testing
 4.2.7 Wear Testing
 4.2.8 Corrosion Testing
4.3 Valvetrain Component Bench Testing
 4.3.1 Component Testing Overview
 4.3.2 Cam and Follower Wear Testing
 4.3.3 Valve Seat and Insert Wear Testing
 4.3.4 Valve Stem and Guide Wear Testing
 4.3.5 Flow Testing
 4.3.6 Hydraulic Lifter Leak-Down Testing
 4.3.7 Thermal Shock Testing
 4.3.8 Stem Seal Oil Metering Testing
 4.3.9 Strain Gage Testing
4.4 Nondestructive Testing
 4.4.1 Overview of Nondestructive Testing
 4.4.2 X-Ray Inspection
 4.4.3 Ultrasonic Inspection
 4.4.4 Liquid Penetrant Inspection
 4.4.5 Magnetic Particle Inspection
 4.4.6 Eddy Current Inspection
4.5 Engine Testing
 4.5.1 Valvetrain System Testing Overview
 4.5.2 Valvetrain Dynamic Testing
 4.5.3 Lash Measurement
 4.5.4 Valve Temperature Measurement
 4.5.5 Valvetrain Friction Measurement
4.6 References

Chapter 5 Valvetrain Tribology

5.1 Introduction to Tribology
 5.1.1 Valvetrain Tribology Overview
 5.1.2 Surface Topography and Contact Mechanics
 5.1.3 Friction
 5.1.4 Wear
 5.1.5 Lubrication and Lubricants
5.2 Engine Lubrication and Lubricants
 5.2.1 Engine Lubrication
 5.2.2 Engine Lubricants
 5.2.3 Synthetic Engine Base Oil and Additives
 5.2.4 Lubricant-Related Engine Malfunctions
5.3 Valvetrain Friction Loss or Energy Consumption
 5.3.1 Overview
 5.3.2 Speed Effects
 5.3.3 Effects of Valvetrain Type
 5.3.4 Temperature Effects
 5.3.5 Spring Load Effects
 5.3.6 Rolling Element Effects
 5.3.7 Lubricant Type Effects
 5.3.8 Oil Flow Rate Effects
5.4 Valvetrain Wear
 5.4.1 Introduction
 5.4.2 Cam and Follower Interface
 5.4.3 Valve Seat and Seat Insert Interface
 5.4.4 Valve Stem and Guide Interface
 5.4.5 Valve Tip Wear
5.5 References
5.5 Valvetrain Lubrication
 5.5.1 Film Thickness
 5.5.2 Stress Effects
 5.5.3 Viscosity Effects
 5.5.4 Anti-Wear Additive Effects
 5.5.5 Temperature Effects
 5.5.6 Engine Oil Degradation
 5.5.7 Soot and Carbon Effects
 5.5.8 Lubricant and Material Reactions

5.6 Surface Engineering of Valvetrain Components
 5.6.1 Overview
 5.6.2 Selective Surface Hardening
 5.6.3 Diffusion Surface Hardening
 5.6.4 Thin Film Coatings
 5.6.5 Thick Film Coatings
 5.6.6 Other Surface Treatments

5.7 References

Chapter 6 Valvetrain Failure Analysis

6.1 General Failure Analysis Practice
 6.1.1 Background Information
 6.1.2 Preliminary Examination
 6.1.3 Macroscopic Examination and Analysis
 6.1.4 Metrology Measurement
 6.1.5 Microscopic Examination and Analysis
 6.1.6 Scanning Electron Microscopy and Energy Dispersive X-Ray Spectrometry Analysis
 6.1.7 Mechanical Testing and Simulation Testing
 6.1.8 Determination of Failure Mechanisms
 6.1.9 Root Cause of Failure
 6.1.10 Writing the Failure Analysis Report

6.2 Valve Failures
 6.2.1 Overview
 6.2.2 Valve Face Failures
 6.2.3 Valve Seat Failures
 6.2.4 Valve Fillet Failures
 6.2.5 Stem-Fillet Blend Area Failures
 6.2.6 Stem Failures
 6.2.7 Keeper Groove Failures
 6.2.8 Tip Failures

6.3 Cam Failures
6.4 Lifter Failures
6.5 Insert Failures
6.6 Guide Failures
6.7 Spring Failures
6.8 Stem Seal Failures
6.9 Rocker Arm Failures
6.10 Retainer Failures
6.11 Key Failures
6.12 References

Index

About the Author